선형대수와 선형시스템 기초

소개

    • 선형 대수의 내용과 선형 동적 시스템의 내용을 포함한 수업입니다. 영문명은 Linear Algebra and Linear Dynamical Systems 입니다.

    • 2013년 2학기에 서울대학교 전기공학부 학부 4학년을 대상으로 진행한 내용을 서울대학교 교수학습센터의 도움으로 동영상으로 제작하였습니다.

    • 이찬화, 오상록 조교 및 교수학습센터 박준이, 박정은 선생님의 지원을 받았고, 전문 촬영팀의 도움으로 동영상의 화질이 양호합니다.

    • 현재 아래와 같은 방법으로 무료 수강이 가능합니다. 과목명이 '최신제어기법'이라고 표기되어 있습니다.


강사

심형보 교수 http://cdsl.kr/~hshim


교재

Jin Heon Seo, Lecture Note, 2013

동영상 청취에 따로 교재가 필요하지 않습니다. 다만 화면 아래의 PDF 문서를 참고로 다운 받을 수 있습니다.


강의 동영상

1. System and State

1. Introduction to the course 14:58

https://youtu.be/15-typuvSOs

2. System 09:21

https://youtu.be/HvIvMQwWxI4

3. Classification of Systems 12:38

https://youtu.be/6Oex8QW796Y

4. State 15:01

https://youtu.be/R8kPauDzkcA

5. Linear State Space Systems 09:29

https://youtu.be/Dt02sjGKxQw

6. Time Invariance 12:59

https://youtu.be/Qr8dM7WVRQs

2. Vector Spaces

1. Fields and Vector Spaces 21:28

https://youtu.be/AkIwfdly8No

2. Subspaces 21:16

https://youtu.be/ldyHFJw-FYU

3. Linear Independence 12:15

https://youtu.be/UpqfJm3dm7k

4. Basis 11:41

https://youtu.be/p7uDP_GSVII

3. Linear Transformations and Matrices

1. Dimensions 20:50

https://youtu.be/UaEsMTHDhsY

2. Change of Basis 09:51

https://youtu.be/29w7HFes5xM

3. Linear Transformations, Null Spaces, and Range Spaces 23:10

https://youtu.be/azSExYD5ASI

* 18:18부터 나오는 Dimension Theorem의 증명 중 R(L) = span(S)에 관한 증명은 불완전하며, 교재 Theorem 2.14의 증명을 참고하기 바랍니다.

4. Matrix Representations of Linear Transformations 15:39

https://youtu.be/c31v01OhNBo

4. Eigenvalues and Eigenvectors

1. Eigenvalues and Eigenvectors 29:41

https://youtu.be/bvATQ37IFT4

2. Independent Eigenvectors and Diagonalization 21:21

https://youtu.be/M2d22IpwivM

3. Eigenspace and Generalized Eigenspace 23:06

https://youtu.be/qzaHykumi-s

5. Eigenvectors and Diagonalization

1. Generalized Eigenvector and Jordan Block 17:40

https://youtu.be/ajHWIHfyacg

2. Chain of Generalized Eigenvector 28:09

https://youtu.be/4laERkXbq7M

3. Summary and Examples 09:31

https://youtu.be/TRism15UMao

6. Cayley-Hamilton Theorem, Functions of a Square Matrix

1. Cayley-Hamilton Theorem 14:03

https://youtu.be/TKHkaMTPHSI

2. Polynomial Functions of a Square Matrix 22:00

https://youtu.be/41AADSqOb0c

3. Minimal Polynomial 09:52

https://youtu.be/LQBTCrCFSNs

4. Functions of a Square Matrix 20:09

https://youtu.be/_8JNJE6w_8g

7. Inner Product Spaces, Normed Spaces

1. Inner Product Spaces 11:49

https://youtu.be/x1YE2cjhVbE

2. Normed Spaces 12:55

https://youtu.be/b04E5y5fhkE

3. Relationship between Inner Product Space and Normed Space 10:40

https://youtu.be/BuaJVQsaW_o

4. Orthonormalization 22:33

https://youtu.be/R7-1EON75HU

5. Norm of Linear Transformations and Induced Norms 14:30

https://youtu.be/gLEbVOOuw1o

8. Induced Norm, Quadratic Form, and Related Properties

1. Induced Norm and Properties 17:17

https://youtu.be/TmBErGGKxM4

2. Property of Linear Operator 10:27

https://youtu.be/mOh7afN2fqY

3. Adjoint of a Linear Transformation 33:51

https://youtu.be/Li1fd7Da1NE

4. Quadratic Forms 16:07

https://youtu.be/xnEtXRz6sGI

5. Induced Two Norm of Matrix 17:43

https://youtu.be/7p_k99pG4z4

* 13분 20초 부근에서 characteristic equation = \sum_{i=1}^{d} ( lambda - lambda_i )^{ \eta_i }에서 \eta_i는 m_i의 잘못입니다. (바로 다음에 다른 방법으로 설명하기 때문에 전개상 큰 문제는 없습니다.)

9. Linear Dynamic System and State Transition Matrix

1. Linear Dynamic System and Modeling 13:09

https://youtu.be/_s7VLkRE-hU

2. Existence and Uniqueness of the Solution 33:30

https://youtu.be/_XzppcvG3aY

3. State Transition Matrix 10:23

https://youtu.be/UsG32EUUQwk

10. Basics of Linear Time-Invariant System

1. Matrix Exponential 17:16

https://youtu.be/lwrswAW5zf8

2. Properties of State Transition Matrix 04:52

https://youtu.be/71m-HRp32X8

3. Variation of Constant Formula 24:07

https://youtu.be/IaYBV9uCLf8

11. Stability of Linear Systems

1. Equilibrium and Linearization of Nonlinear Model 17:42

https://youtu.be/q9bXGvZW4LE

2. Definition of Lyapunov Stability 23:25

https://youtu.be/M54o-ACimSY

3. Determination of Stability 17:51

https://youtu.be/q49deFJjlAo

4. BIBO Stability of Linear Systems 16:47

https://youtu.be/D_v1l1drzt8

5. BIBO Stability and Poles of LTI Systems 09:36

https://youtu.be/LqIWmbbIUco

12. Lyapunov Theorem, Stable and Unstable Subspaces

1. Lyapunov Theorem 43:36

https://youtu.be/EmmR1JKi-bs

2. Stable and Unstable Subspaces 16:36

https://youtu.be/rzO3tOyxBNo

13. Controllability

1. Definition of Controllability 09:02

https://youtu.be/BWcHoIFLGqU

2. Controllability Gramian 21:59

https://youtu.be/bci_Dp3gwlQ

3. Property of Controllability Gramian 13:08

https://youtu.be/NzNwqVIAZdQ

4. Controllability of Linear Systems 28:33

https://youtu.be/mzryeX413pY

14. Observability and Duality

1. Definition of Observability 14:43

https://youtu.be/ARkwtTISCes

2. Observability Gramian 15:32

https://youtu.be/3AkHycpHhyI

3. Observability of Linear Systems 11:35

https://youtu.be/wZj0obdrJkE

4. Observability of Linear Time-Invariant Systems 16:37

https://youtu.be/FTUt5N_5ZaE

5. Duality 10:20

https://youtu.be/j1wKOUEXUTM

15. Controllable and Observable Canonical Forms

1. Controllable Canonical Forms 34:26

https://youtu.be/tPCaaVrKETU

2. Example for Controllable Canonical Forms 12:29

https://youtu.be/nviCyKZVUkk

3. Observable Canonical Forms 16:42

https://youtu.be/baiycO9fUJg

16. Structure of Uncontrollable Systems

1. Controllable Subspace 11:45

https://youtu.be/vjsA_YYh-6I

2. Properties of Controllable Subspace 10:57

https://youtu.be/geGZ89yWo1U

3. Controllability Decomposition 35:11

https://youtu.be/YTgNH5___NI

4. Stabilizability 09:55

https://youtu.be/ysh3QT6HyX0

17. Structure of Unobservable Systems

1. Unobservable Subspace 17:49

https://youtu.be/gwIK-vrA5go

2. Observability Decomposition 19:51

https://youtu.be/v8D8-TAvHwQ

3. Detectability 12:25

https://youtu.be/Vry7PMXS4o4

4. Kalman Decomposition 13:24

https://youtu.be/f1gHUKh3kOw

18. Popov-Belevitch-Hautus Test

1. PBH Test for Observability 21:53

https://youtu.be/mJHwK6BozZs

2. PBH Test for Detectability 13:18

https://youtu.be/F5EkORVpZ4I

3. PBH Test for Controllability and Stabilizability 15:15

https://youtu.be/coxrvDs0uSQ

4. Consideration of Complex Numbers and Examples 22:05

https://youtu.be/QqxCdVy5hkU

19. State Feedback and Observers

1. State Feedbacks 33:17

https://youtu.be/-42TTRKSJM4

2. State Observer 24:45

https://youtu.be/rrEiyZZTrkY

20. Reduced-order Observer, Separation Principle

1. Review on State Feedback and Observer 06:59

https://youtu.be/p8X_c5ysxXg

2. Reduced-order Observer 23:38

https://youtu.be/k1LvRvjEZE4

3. Full-order Observer Based Controller Design and Separation Principle 21:43

https://youtu.be/8XcmKv02dbk

4. Reduced-order Observer Based Controller Design and Separation Principle 14:40

https://youtu.be/j0C3IBimsg0

21. Realization

1. Minimal Realization 30:20

https://youtu.be/gROc1dVgnTA

2. Controllable and Observable Canonical Form Realization 10:30

https://youtu.be/ozEsAlTUeB0

3. MIMO Case of Canonical Form Realization 20:55

https://youtu.be/PN2n3WTeVRI

22. Regulation and Tracking

1. Set-point Regulation 31:33

https://youtu.be/wAzjOo4e9Kg

2. Robust Tracking and Disturbance Rejection 29:03

https://youtu.be/MsjvIHtwhu4

3. Optimal Control 15:49

https://youtu.be/APHZ9iZbcdI


강의 교재: https://drive.google.com/file/d/19kLoBhxVDG7iAgMTfzGiDkViFpIU0kE7/view?usp=sharing